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Abstract-The effect of non-linear dependence of resistance on temperature onthe Joulean production of 
heat in electrically conducting systems is investigated. The theory is compared with well-known linear 
theories. In common conducting materials there exists a critical current beyond which steady solutions 
are unavailable. Unlike the linear theory the critical current does not imply unbounded temperatures. 
The linear theory always overestimates the critical current. In the non-linear theory the solutions for 
currents below critical are not unique. The various branches of the non-unique solutions are not all 
stable. A neutral solution and neighboring unstable solutions to the associated stability problem 

exist when the current is at the critical value. 

NOMENCLATURE 

channel separation distance; 
current ; 
thermal conductivity; 
resistance at temperature of the wall; 
volume ; 
(xl/h, x2/h, x3/h) dimensionless co- 
ordinates; 
dimensionless time; 
dimensionless temperature difference 
referred to wall temperature; 
maximum of #; 
8*/a*, ; 
perturbation temperature difference; 
temperature difference referred to 
wall temperature; 
(d$/d9&,; 
dimensionless heat source (resist- 
ance) ; 
WW; 
d24iG2 ; 
PRoh/kd V; 
dW,b; 

INTRODUCTION 

A WELL known result of the theory of steady 
heat conduction in electrical coils generating 
Joulean heat is that if the resistance is assumed 
linear in the temperature and the current in- 
creased slowly to a certain finite value, the coil 

temperature grows without bound. Though the 
mathematics in this problem resembles that 
which described the buckling of Euler columns, 
it seems not to have been recognized that a 
stability problem is also involved. Moreover, 
the effects of a general dependence of resistance 
on temperature have not been analyzed. We 
show in this paper how the salient features of 
the critical current phenomena are controlled 
by the assumed nature of the dependence of 
resistance on temperature. The existence of the 
critical current is interpreted from the point of 
view of the stability of the steady temperature 
distribution. 

In Section 2 of this paper we treat non-linear 
generation of heat in a plane electrically conduct- 
ing plate. When the resistance is proportional to 
the first or a greater power of the temperature 
and the wall temperatures prescribed, there 
exists a finite critical value of the current beyond 
which steady solutions do not exist. This feature 
is clearly apparent in each of the substantial 
number of exact solutions which have been 
developed for the linear case [l, 21. For the non- 
linear case there is the additional complication 
that the solutions which do exist are not unqiue. 
To each current below the critical belong two or 
more solutions characterized by a different 
maximum temperature. As in the linear case no 
solutions exist when the current exceeds a 
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certain finite critical value. Unlike the linear case 
this critical current corresponds to a finite 
maximum temperature. If the resistance function 
also has an increasing curvature (as for common 
metals) there exists a first maximum of the cur- 
rent in the neighborhood of which the solution 
is double valued. Through this maximum 
(Section 3) there is a neutral (zero wave number) 
solution to the associated stability equation. 
Neighboring the neutral solution arc stable 
(unstable) solutions which for a fixed current 
below the critical are associated with a lower 
(higher) maximum temperature. 

In Section 4 of the paper the results which 
apply to the plane plate are extended to other 
geometries and made to include certain effects 
of non-homogeneity. It is shown that the critical 
current associated with the linear resistance 
universally bounds the critical current associated 
with the non-linear problem. 

An exact solution corresponding to a quadratic 
polynomial dependence of resistance on tem- 
perature is constructed in the appendix. 

The results of this investigation show that the 
critical current phenomenon is not a mere con- 
sequence of the linearized resistance and is not 
necessarily associated with infinite (or even large) 
temperature differences. An alternative view 
of the critical current is discussed in the con- 
clusion. Similar results hold for fluid systems 
which generate heat by viscous friction [4, 5, 61 
and will certainly apply to certain exothermic 
chemically reacting systems. 

2. PLANE PLATE 

We shall develop the theory in detail for the 
simple case of an infinitely wide plane plate. The 
use of this geometry as a model for an electrical 
coil is discussed by Jakob [I]. In Section 4 we 
extend the results of this section to other 

#(l) = #(- 1) = 0 (2) 

where h = PRoh2/kdV is the current parameter. 
The reference temperature 4 is chosen so that 
polynomial approximations to 4 may be written 
as $m = 1 + * + 82@ + - - c?,*~. We assume 
that the resistance is a monotonically increasing 
function of the temperature so that 4’(+) .: I 
with a’(O) = 1. 

Since +($) ,;-_ 1 the curvature of # is negative. 
There is but one stationary point in (- 1, 1) and 
it is a maximum. By symmetry the maximum 
occurs at the channel center, and we may replace 
the conditions (2) with 

y(o) ~- $(I) -= 0. 

The symmetry requirement, though conveni- 
ent, is not essential in what follows. Suppose at 
the upper wall #(I) # 0. Then r = # -~ 
#(l)(l + x)/2 satisfies 

F(l) = F(-1) = 0 

and from the negative curvature and boundary 
conditions there exists x = E(- 1 :’ E 1:. 1) 
such that 

E(C) = 0. 

A linear transformation of co-ordinates and a re- 
definition of X could then be used to restore the 
conditions (3) for r. 

Equation (1) and conditions (3) are placed by 
the equivalent integral equation 

$ = X :I’ dv 14 [# b4 dy- (4) 

geometries. 
., 0 

The co-ordinate origin is located at the plate Smce $ is ‘Onvex 
center. The top and bottom of the plate are held Q& (1 --- s) ..I 4 :; ‘tl,m 
at a common temperature. The current flow is 
parallel to walls and the heat generation which where & - ~ (cl(O). This last inequality is com- 

is assumed equal to electrical power dissipation bined with (4) to produce 

is represented by the non-dimensional tempera- 
ture dependent function +(#). It is assumed that 

h j dq ? 4 [# (1 - r)] dr :G 4 5; 
Z 0 

the thermal cond.uctivity is constant, In dimen- 
sionless variables we have 

A j d7 { 4 WnJ dy (5) 
.C 
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with h restricted by the condition that (5) holds 
when x = 0 

= UB (h). (6) 

It follows from (6) that no solutions exist when 
the current parameter exceeds max [UB(h)]. The 
behavior of the solutions depends largely on the 
order with which +(&,J increases as & tends to 
infinity. We let &, represent the asymptotic 
development of 4 so that 

lim + [hl + A, #k (Au > 0) 
Sm-+m 

and from (6) 

Three cases may be distinguished. 

(a) 0 < k, < 1, X -+ co. The current is a 
unique and increasing function of the 
maximum temperature. Solutions exist for 
all X. 

(b) k, = 1, 2/A, i h < 3/A,. The current is 
a. unique and increasing. function of the 
maximum temperature but possesses a 
finite asymptote (3/A,) beyond which 
solutions do not exist. 

(4 k, > 1, h + 0. The current is not a unique 
function of the maximum temperature. 
UB(h) has two zeros and must possess at 
least one maximum. Beyond max LB(A) 
there are no solutions. Below max LB(A) 
there are at least two solutions. 

For our purposes it will suffice to remark that 
there are many materials for which the conclu- 
sions of (c) above apply. For many of these 
+(#) > 1, $‘(#) > 1, +“(#) > 0 where the equality 
applies only for I,!J = 0. Iron, tungsten and gold 
are but a few of the metals which satisfy the 
above conditions over a wide range of tempera- 
tures. 

That a solution of equation (1) and the bound- 
ary conditions exists for all & may be easily 

established by direct quadrature. Thus we have 

where G = J $J(#) d$, 

so that given any & we may calculate a cor- 
responding h. 

We now establish that the first stationary point 
of X (&) is maximum when 4” > 0. From (1) and 
(3) (VJ = &+/JVJ 

d24 _ 
dxs 

--x+-h#lj 

d2$ 
dx2 

= - j; f#l - 2 x f$‘$J - x 4” $2 - h #I’$ (8) 

~(1)=~(0)=11;(1)=~(0)=0 

Multiply (7) by I$ and (8) by 4 and integrate 
over (0, 1) to obtain (A = 0) 

Ai=0 = _ &Cd? 

i&dr 

(9) 

We observe that with X + 0 and $ (0) = 1 (7) 
must generate $ 3 0, (d$/dx) < 0. Moreover (7) 
cannot generate I&X) with an interior zero unless 
d$/dx also possesses an interior zero. But 

d$ - x j 4 ($) dx - h I+’ 4 dx di = ,, 0 

cannot vanish before x changes sign. This 
implies that $ 3 0 when x first vanishes. That 
this point is maximum follows from j; < 0. 
The possibility that i; > 0 at other stationary 
points would also seem very restricted and only 
this one maximum appears in the exact solutions 
(see appendix). 

The behavior of solutions and of the function 
X (#m) can be quite closely approximated by the 
bounding technique which leads to (6). The 
bounds can be replaced with a tighter relation. 
From (4) we form the ratio 
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bdrl min 4 (7) 
We have also plotted the exact solution corres- 

Zlf,o 
1 ponding to $1 and $0 giving a graphical repre- = ____~ 

SydqmaxB(q) 
1 _ x2’ sentation of the conclusions of this section. 

1 

Hence 3. STABILITY OF THE TEMPERATURE 
DISTRIBUTION 

*m (1 - 4 < # (xl < &n (1 - x2> The equation governing the unsteady conduc- 

and the solution is found in a region bounded 
tion of heat generated by an arbitrary source 

by parabolas of the first and second degree. It (resistance) function is 

then follows from (4) that X must lie in a region 
defined by 

a** - - = vs +* + h $A (#*). at (12) 

*m 

] drl% #J Mm (1 - r2)1 d; 

The perturbation I/’ (x, y, z, t) from the steady- 
state solution # (x) is introduced, i.e. $* = #’ + $. 
We drop quadratic powers of qG’ and expand $ 

GM, 
* m to obtain 

~~+##n(~-r)ld~ 
(10) 

a; = vz ly + x $’ (*) lfb’ 

In Fig. 1 we have used (10) to bound the (13) 
exact solution for $2 (see appendix). The bounds 4’ (~9 = d+/d# 
(10) are evaluated as and require that 

2&n sL’(- l,u,z,t)=~‘(l,y,z,t)=O. (14) 
5 118 

1 +ghl++ We next seek solutions for wavy disturbances 

(11) 4’ = & (x) exp [- ct + iay + i@z] (I 5) 

FIG. 1. Current parameter as function of maximum temperature. 
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and infer that 

d2$c ~ = (a2 + p - c - A$’ ($)I #c 
dxz 

(16) 

#c (1) = #c t-11. (17) 

Equations (16) and (17) constitute an eigen- 
value problem from which we may determine 
stable (c > 0) and unstable (c < 0) eigenvalues. 

Consider first the linear case 4’ (#) = 1. A 
complete set eigenfunctions which satisfy (17) 
are 

cos vTrx/2 (V = 1, 3, 5 - - - -) 

sin 1~7x/2 (V = 2,4, 6 - - - -) 

and these satisfy (16) if 

VT2 
c+A--a2-p= 2 . 0 

The least eigenvalue is 

c = 7r2/4 + a2 + /3a - X (&$ 

Several conclusions may be drawn : 

1. The temperature distribution is stable with 
X (&J < G/4. From considerations of the 
preceding section we know that this condi- 
tion must always hold. 

2. There is a neutral solution for zero wave 
numbers and 

It also follows that the temperature dis- 
tribution is less stable to layered (zero wave 
number) disturbances than to periodic 
disturbances. 

Now we consider the non-linear case 

U’ (99 > 19 $” (#) 3 01 
for the condition of greatest instability 

(CL = /I = 0). 

We first observe that there is a neutral solution 
of (16) and (17) where dh/d& = 0. This follows 
from comparison of equations (7) and (8) 

3 = - x I$ - h I$’ (I)) 4 
dx2 

$ (1) = $A (-1) = 0 

and (16) and (17). When x = c = 0 the solu- 
tion of (16) and (17) is given by 

A lCle (x) = 4 (x) 

where A is an arbitrary constant. A neutral 
solution of the perturbation equation is thus 
associated with the critical current. In particular 
this is true in the neighborhood of the first 
maximum of h (#m). 

Now we examine the behavior of c[X($,)] in 
the neighborhood of this first maximum. From 
equations (8) and (16) we obtain 

o=j{$g$+g}dx 
-1 

This is rewritten as 

and in the passage to the limit 

dc j$(+)@x 

dx= 
_i,p b - 

(18) 

It follows that in the neighborhood of the first 
maximum of h(&J the eigenvalue c and the slope 
h have the same sign. 

Existing exact solutions which satisfy the 
condition $‘(#) > 1, and #“(#) > 0 have only 
one such stationary point and there are just two 
branches of the solution. The first branch is 
stable and the second unstable. 

The second branch has a higher maximum 
temperature and could presumably be started 
by preheating and maintained by large dissipa- 
tion with small currents. The high temperatures 
are certainly unstable and if disturbed would 
decrease to values compatible with the stable 
solution at the given current. 
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4. OTHER GEOMETRIES-INHOMOGENEOUS 

MATERIALS 

The results of the previous sections are here 
extended to round wires, spheres and certain 
inhomogeneous materials. We again consider 
materials for which 4’ (4) > 1, and 4” (#) > 0. 
For these the generation (resistance) function 
may be represented by 

d (#) = # + G (3) 

G (4) > 1 
G (0) = 1. 

The steady equation governing the temperature 

+~.f(x)M+G($)l=O (19) 

P 6) > 0 
.f (x) > 0 

a<x<b 

and the boundary conditions 

4 (a) = # (6) = 0 (20) 

resemble the Sturm-Liouville system to which 
they reduce with G = 0. For solid spheres or 
cylinders we replace (20) with 

d+ &a = 0) = $(b = 1) = 0. (21) 

These latter cases are singular [p (0) = ,f (0) = 0] 
but this introduces no essential modification of 
the results which follow. 

Let I$ be the solution to the reduced linear 
system 

jx P wg i ! + Xf(x) J = 0 (22) 

and either of the conditions (20) or (21). From 
the Sturm-Liouville theory it follows that the 
linear system will generate a sequence of positive 
eigenvalues. To the first such value ho will 
correspond an eigenfunction &I which satisfies 
the boundary conditions and has no zero in (a, b). 

Assume that a solution of (19) and (20) or 
(21) exists when X = &. From (19) and (22) we 
obtain 

iof Jo G 64) 1 dx 

and integrating by parts 

0 = 10 if(x) 40 (x) G (#) dx > 0. 
0 

It follows that our assumption was erroneous 
and that there is-no solution of (19) and (20) or 
(21) when h = ho (the first eigenvalue of the 
reduced linear system). 

Now let h # ho be any value of h for which 
the nonlinear system has a solution. From (19) 
and (20) 

It follows that 10 is a universal upper bound on 
X(&J and that 

h (&J < 10 1ClmKSm + 1). 

For circular wires &I = 5.784 as determined by 
the first posi$ve root of JO (hi/s) = 0. For the 
infinite plate ho = 7+/4 (see Fig. 1). 

The universal bounds, though independent of 
the (suitably restricted) functional form of 4 are 
not as tight as those developed by the integral 
technique of Section 2. 

Note that the functions p(x) and f(x) of 
equation (19) include effects of position de- 
pendent conductivity and resistivity so that 
these effects are accommodated in this formula- 
tion. 

The remarks leading to equation (9) apply in 
the general case so that 

There is no interior zero of $ before the first 
I,& for which x = 0. This point is a maximum 
and in its neighborhood the solution a double 
valued function of X. The possibility that for 
larger values of I/J~ the function )1(&J assumes 
a relative minimum also seems quite restricted. 

The conclusions relative to the problem of 
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stability of the temperature distribution also 
carry over. A neutral solution for layered dis- 
turbances coincides with each stationary point 
of X (I,L). The remarks which lead to (18) hold 
and we obtain 

dc %f+4dx 

dX I=O - b 
IgPdn 

where g(x) > 0 in (a, b) and for isotropic 
materials 

g (x) =f(x) = 
x cylindrical co-ordinates 
x2 spherical co-ordinates. 

Solutions immediately to the right of the first 
maximum of h Qm) are stable. Those to the left 
are unstable. 

5. CONCLUSIONS 

A critical current is a current beyond which 
steady-state solutions to the conduction equation 
with wall temperatures prescribed do not exist. 
A critical current will exist for beat generation 
(resistance) functions proportional to a linear or 
higher power of the temperature. When the order 
of this dependency is greater than or equal to 
zero but less than one (constant to linear genera- 
tion), no critical current exists. The linear theory 
always overestimates the value of the critical 
current. Moreover in the non-linear case the 
critical current coincides with a finite (not neces- 
sarily large) value of the maximum temperature. 
Hence the unbounded temperatures, which are 
commonly used to define the critical current, 
are only accidental and not essential to the 
phenomenon. 

In the non-linear case the temperature distribu- 
tion which develops is not a unique function of 
the current. Conceivably distributions with 
high temperatures could be attained by pre- 
heating and maintained with small currents. 
But such temperature distributions are unstable 
and if disturbed would presumably assume lower 
stable values compatible with the given current. 

APPENDIX-EXACT SOLUTIONS 

Exact solutions of the non-linear problem are 
sparse. For # = e4 there is a solution for the 

H.M.-T 

plane plate which has been examined by Jakob 
[5]. A simple solution for this resistance function 
has also been used by Kearsley [7] to discuss 
variable viscosity effects in the flow of fluids in 
round pipes and is easily adapted to wires. The 
plane plate problem is particularly simple 
because it possesses an energy integral. How- 
ever, even here solutions in terms of tabulated 
functions are scarce. It is possible to obtain the 
solution for this latter problem when + = $2 or 
$ = 43, i.e. quadratic or cubic polynomials, in 
terms of elliptic functions. Below we exhibit the 
solution of (1) and (3) with 4 = 42 = 1 + # 
+ s*2. 

or 

& - 4 = u (tan2 T/2)/cos y 

T = sin-i [ snx (22g)“2] 

where 

c2 = 8 (1 + sin y). 

The current parameter X and the unknown 
maximum temperature is obtained by putting 
x = 1 and # = 0. The graph of the equation so 
obtained is compared for (6 = 0.195) with in- 
equalities (11) in Fig. 1. We note that solutions 
do not exist when the current parameter ex- 
ceeds 1.28. For each value of h below the critical 
there are just two solutions. A double-valued 
solution for currents below the critical is com- 
mon to all known exact solutions. 
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R&m&-L’effet de la dependance non-lineaire de la resistance en fonction de la temperature sur la 
production de chaleur par effet Joule dans des systemes conducteurs de l’electricite est Btudie. La thtorie 
est cornpa& avec des theories lineaires bien connues. Dans les mattriaux conducteurs habituels, il 
existe un courant critique au-de18 duquel on ne peut pas obtenir de solutions permanentes. A la 
difference de la theorie lintaire, le courant critique n’implique pas d’avoir des temperatures illimittes. 
La theorie lineaire surrestime toujours lecourantcritique.Danslatheorienon-lidaire, lessolutionspour 
des courants au-dessous de la valeur critique ne sont pas uniques. Les differentes branches de ces solu- 
tions ne sont pas toutes stables. 11 existe une solution neutre et des solutions au voisinage de I’insta- 

bilite pour le probleme associe de la stabilite lorsque le courant est a la valeur critique. 

Zusammenfassung-Der Einfluss einer nicht-linearen Abhangigkeit des Widerstandes von der Tem- 
peratur auf die Erzeugung Joule’scher W&me in einem elektrisch leitenden System wird untersucht. 
Diese Theorie wird mit bekannten linearen Theorien verglichen. 

Bei gewiihnlichen leitenden Stoffen gibt es einen kritischen Strom, jenseits dessen stetige Losungen 
nicht mehr erreichbar sind. Im Gegensatz zur linearen Theorie bedeutet kritischer Strom nicht 
unbegrenzte Temperaturen. Die lineare Theorie iiberschltzt den kritischen Strom immer. Bei der 
nicht-linearen Theorie sind die Losungen fur Strome unterhalb des kritischen nicht eindeutig. Die 
verschiedenen Aste der nicht eindeutigen Losungen sind nicht alle stabil. Wenn der Strom den 
kritischen Wert erreicht hat, gibt es fur das zusammengefasste Stabilitatsproblem eine neutrale und 

benachbarte instabile Losung. 

AHHOTaqWSI-~CcJICAyeTcn BJIHnHIle Iienrim?PuOti R~BS~CHMOCTLI COnpOTIiBjIeIICIfI OT TehI- 

nepaTypbl Ha &KoyneBo RbIAenetrHe Tenna ~3~1eKTponpo~o~~q~1xc11cTe~ax.TeopeT~secKi4e 

pe3yJIbTaTbI AaHHOrO I4CCJIe~OBaHHH CpaBHHBaIOTCH C pe3yJIbTaTaMI'I XOpOIIIO I43BeCTIIbIx 

JIllHehbIX TeOpPI@. R 06b1qur.t~ npOBO~flIIJ&lX MaTepllaJIaX CyIl(eCTByeT KpMTWIeCKHfi TOIE, 

flJIH 3HaqeIUd HHHCe KOTOpOrO CTaIJllOIiapHbIX peUIeHHfi HeT. 13 npOTBBOnOJIO~HOCTb JIKKeir- 

rIoti Teopgn4 B AaKHoM cnytrae KpnTnqecKd TOK Ire nonpaayMeBaeT KeoI~pawvieKfibIx Tehi- 

nepaTyp. JhfI~etKafl Teopw Bceraa 3anbnuaeT IEp~ITweCK~lil TOK. no KenmrIefiKott TeopwI 

peureHwR ,qnfl ~0~03 Knme IrpnTwIecItoro rIe 0~HontIaqHbI. He BCe BeTBR lIeO~HO3Ha'IHbIX 

pelIIeHlifi CTathJIbKEJ. CyueCTByIOT HeirTpaJIbHOe M CMeH<HOe IIeCTa6HJIbHbIe PeUleHMH Ii 

COOTBeTCTByIOII&ePl 3aflBqe yCTOi+IllBOCTII npH KpnTRqeCKHX 3Ha'leHHRX TOKa. 


